Abstract

The rapid expansion of metro networks, e.g., in many cities of China, continuously introduces the operation of new stations every year. Due to the lack of historical data and complicate variations of short-term passenger flow in the early stage of operation, it is difficult to accurately predict inbound and outbound passenger flows of new metro stations in the short term, which would be the database for train scheduling for new stations before operation, dynamic capacity optimization for new stations under operation, short-term prediction of cycle sharing demands near new stations, and so on. Traditional methods usually failed to exactly reflect the complicate rules or were unusable without the new station’s historical data. In order to solve the above problems, this paper proposes a short-term inbound and outbound passenger flow prediction model for new metro stations at the early stage of operation by combining the K-means clustering algorithm, an improved spatiotemporal long short-term memory model (Sp-LSTM), and a real-time feedback error model (mean absolute error, MAE), where passenger flows’ spatial-temporal characteristics and land-use relevance are considered. The application in Guangzhou Metro, China, where Line 21 is regarded as a new line, shows that the proposed K-Sp-LSTM model has the best prediction accuracy compared with traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.