Abstract

Short-term hydro generation scheduling (STHGS) aims at determining optimal hydro generation scheduling to obtain minimum water consumption for one day or week while meeting various system constraints. In this paper, the STHGS problem is decomposed into two sub-problems: (i) unit commitment (UC) sub-problem; (ii) economic load dispatch (ELD) sub-problem. Then, we present a hybrid algorithm based on multi ant colony system (MACS) and differential evolution (DE) for solving the STHGS problem. First, MACS is used for dealing with UC sub-problem. A set of cooperating ant colonies cooperate to choose the unit state over the scheduled time horizon. Then, the adaptive differential evolution (ADE) is used to solve ELD sub-problem. MACS and ADE are run in parallel with adjusting their solutions in search of a better solution. Meanwhile, local and global pheromone updating rules in MACS and adaptive dynamic parameter adjusting strategy in DE are applied for enhancing the search ability of MACS-ADE. Finally, the proposed method is implemented to solve STHGS problem of Three Gorges–Gezhouba cascaded hydropower plants to verify the feasibility and effectiveness. Compared with other established methods, the simulation results reveal that the proposed MACS-ADE approach has the best convergence property, computational efficiency with less water consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.