Abstract
Qatar economy has been growing rapidly during the last two decades during which waste generation and greenhouse gas emissions increased exponentially making them among the main environmental challenges facing the country. Production of biochar from municipal solid organic wastes (SOWs) for soil application may offer a sustainable waste management strategy while improving crop productivity and sequestering carbon. This study was conducted to (1) investigate the physicochemical parameters of biochars for SOW, (2) select the best-performing biochars for soil fertility, and (3) evaluate the potential benefits of these biochars in lowering greenhouse gases (GHGs) during soil incubation. Biochars were produced from SOW at pyrolysis temperatures of 300–750 °C and residence times of 2–6 h. Biochars were characterized before use in soil incubation to select the best-performing treatment and evaluation of potential GHG-lowering effect using CO2 emission as proxy. Here, soil–biochar mixtures (0–2%w/w) were incubated in greenhouse settings for 120 days at 10% soil moisture. Soil properties, such as pH, EC, TC, and WHC, were significantly improved after soil amendment with biochar. Two biochars produced from mixed materials at 300–500 °C for 2 h and used at 0.5–1% application rate performed the best in enhancing soil fertility parameters. A significant decrease in CO2 emission was observed in vials with soil–biochar mixtures, especially for biochars produced at 500 °C compared the corresponding raw materials which exhibited an exponential increase in the CO2 emission. Hence, application of biochar to agricultural soils could be beneficial for simultaneously improving soil fertility/crop productivity while sequestering carbon, thereby reducing anthropogenic emissions of GHGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.