Abstract

Planktivorous fish predation directly affects zooplankton biomass, community and size structure, and may indirectly induce a trophic cascade to phytoplankton. However, it is not clear how quickly the zooplankton community structure and the cascading effects on phytoplankton recover to the unaffected state (i.e. resilience) once short-term predation by fish stops. The resilience has implications for the ecological quality and restoration measures in aquatic ecosystems. To assess the short-term zooplankton resilience against fish predation, we conducted a mesocosm experiment consisting of 10 enclosures, 6 with fish and 4 without fish. Plankton communities from a natural lake were used to establish phytoplankton and zooplankton in the mesocosms. High biomasses (about 20 g wet mass m-3) of juvenile planktivorous fish (perch, Perca fluviatilis) were allowed to feed on zooplankton in fish enclosures for four days. Thereafter, we removed fish and observed the recovery of the zooplankton community and its cascading effect on trophic interactions in comparison with no fish enclosures for four weeks. Short-term fish predation impaired resilience in zooplankton community by modifying community composition, as large zooplankton, such as calanoids, decreased just after fish predation and did not re-appear afterwards, whereas small cladocerans and rotifers proliferated. Total zooplankton biomass increased quickly within two weeks after fish removal, and at the end even exceeded the biomass measured before fish addition. Despite high biomass, the dominance of small zooplankton released phytoplankton from grazer control in fish enclosures. Accordingly, the zooplankton community did not recover from the effect of fish predation, indicating low short-term resilience. In contrast, in no fish enclosures without predation disturbance, a high zooplankton:phytoplankton biomass ratio accompanied by low phytoplankton yield (Chlorophyll-a:Total phosphorus ratio) reflected phytoplankton control by zooplankton over the experimental period. Comprehensive views on short and long-term resilience of zooplankton communities are essential for restoration and management strategies of aquatic ecosystems to better predict responses to global warming, such as higher densities of planktivorous fish.

Highlights

  • Predators play a crucial role in food webs, by shaping the structure of prey communities and affecting ecosystem functioning, for example through trophic cascades, modification of energy flow and altered biodiversity [1,2,3]

  • In the no fish enclosures, there were no differences in zooplankton biomass and mean length between days 8 and 43

  • The zooplankton:phytoplankton biomass ratio was significantly higher at the end of the experiment compared to the sampling at day 8, whereas the chla:TP ratio was lower in the no fish enclosures (Fig 4)

Read more

Summary

Introduction

Predators play a crucial role in food webs, by shaping the structure of prey communities and affecting ecosystem functioning, for example through trophic cascades, modification of energy flow and altered biodiversity [1,2,3]. Phytoplankton could benefit from controlled zooplankton grazing by fish and/or extra nutrients enhanced by fish resuspension [17] or excretion [18]. For this reason, lake restoration measures like biomanipulation mostly focus on reducing fish predation on zooplankton by planktivorous fish removal. Lake restoration measures like biomanipulation mostly focus on reducing fish predation on zooplankton by planktivorous fish removal This favors the recovery of large-sized zooplankton, which are the most efficient phytoplankton grazers, and leads to improvement of water quality [19,20,21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call