Abstract
In this study, we investigate the intrinsic mechanism by which an extremely low-frequency electromagnetic field (ELF-EMF) influences neurons in the Schaffer collateral-CA1 (SC-CA1) region of rat hippocampus using electrophysiological techniques. ELF-EMF has an interesting effect on synaptic plasticity: it weakens long-term potentiation and enhances long-term depression. Here, the magnetic field effect disappeared after a blockade of voltage-gated calcium channels and calcineurin, which are key components in the Ca2+/calcineurin pathway, with two blockers, cadmium chloride and cyclosporin A. This fully establishes that the effect of ELF-EMF on synaptic plasticity is mediated by the Ca2+/calcineurin pathway and represents a novel technique for studying the specific mechanisms of action of ELF-EMF on learning and memory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.