Abstract

Formaldehyde (FA) is an environmental pollutant widely used in industry. Exposure to FA causes irritation of the respiratory mucosa and is associated with inflammation and oxidative stress in the airways. This study aimed at investigating the oxidative effects on the inflammatory response in the trachea and the diaphragm muscle (DM) of rats exposed to different concentrations of formaldehyde. Twenty-eight Fischer male rats were divided into four groups: control group (CG) exposed to the ambient air; and three groups exposed to the following formaldehyde concentrations of 1% (FA1), 5% (FA5) and 10% (FA10), respectively. The exposure occurred for twenty minutes, three times a day for five days. Oxidative stress analyses were performed by carbonyl protein, lipid peroxidation and catalase activity. The assessment of inflammatory cell influx in both organs and the mucus production in the trachea was carried out. There was an increase of lipid peroxidation in the trachea and the DM of FA1 and FA5 groups compared to the CG and FA10. The oxidation of DM proteins increased in FA10 group compared to CG, FA1 and FA5. The catalase enzyme activity in the DM was reduced in FA1, FA5 and FA10 compared to the CG. Meanwhile, there was a reduction in the enzymatic activity of FA10 compared to the CG in the trachea. The morphometric analysis in the DM demonstrated an influx of inflammatory cells in FA10 compared to the CG. In FA10 group, the tracheal epithelium showed metaplasia and ulceration. In addition, the tracheal epithelium showed more mucus deposits in FA5 compared to CG, FA1 and FA10. The results demonstrated that the exposure to formaldehyde at different concentrations in a short period of time promotes oxidative damage and inflammation in the DM and the trachea and causes metaplasia, ulceration and increased mucus at the latter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.