Abstract

The areca nut-chewing habit is common in Southeast Asia, India, and Taiwan, and arecoline is the most abundant and potent component in the areca nut. The effects of arecoline on birth defects have been explored in many species, including chicken, mice, and zebrafish. The effects of arecoline on embryos after long-term exposure are well established; however, the effects of short-term embryo exposure to arecoline are not understood. Using zebrafish, we study the effects of short-term exposure of arecoline on embryos to model the human habit of areca nut-chewing during early pregnancy. Arecoline, at concentrations from 0.001% to 0.04%, was administered to zebrafish embryos from 4 to 24 hours post fertilization. The morphological changes, survival rates, body length, and skeletal muscle fiber structure were then investigated by immunohistochemistry, confocal microscopy, and conventional electron microscopy. With exposure of embryos to increasing arecoline concentrations, we observed a significant decline in the hatching and survival rates, general growth retardation, lower locomotor activity, and swimming ability impairment. Immunofluorescent staining demonstrated a loose arrangement of myosin heavy chains, and ultrastructural observations revealed altered myofibril arrangement and swelling of the mitochondria. In addition, the results of flow-cytometry and JC-1 staining to assay mitochondria activity, as well as reverse transcription-polymerase chain reaction analyses of functional gene expression, revealed mitochondrial dysfunctions after exposure to arecoline. We confirmed that short-term arecoline exposure resulted in retarded embryonic development and decreased locomotor activity due to defective somitic skeletal muscle development and mitochondrial dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call