Abstract

The glycolytic inhibitor 2-deoxy-D-glucose (2-DG) has been used as a therapeutic agent and as an adjuvant in cancer therapy with either weekly fractions of the treatment or daily administration. While the weekly fraction has often been found to be nontoxic and effective, other treatment regimes are tolerated to a relatively lesser extent. It was therefore, considered worthwhile to investigate the efficacy of short- and long-term exposure of tumor cells to 2-DG under the controlled conditions. Seven-day-old MTS were exposed to 2-DG (5 mM, equimolar to glucose concentration in media) for different time intervals (30 min to 24 h) trypsinized and plated for clonogenicity. Alternatively, spheroids were grown either continuously in the presence of 2-DG or were treated with 2-DG for 2 h (short-term exposure) and grown in 2-DG-free media for 21 days and assessed for spheroid growth, cell viability, apoptosis, cytogenetic damage, mitochondrial status, and oxidative stress. Exposure of spheroids to 2-DG for 2-4 h induced 30% cell death (SF 0.70) while, a 24-h exposure resulted in only a marginal decrease in clonogenicity (SF 0.95). Furthermore, the spheroids disintegrated completely by 28 days in the case of 2-h exposure to 2-DG, while spheroids grown continuously in the presence of 2-DG repopulated. The cytotoxicity following short-term exposure of MTS to 2-DG was primarily due to the induction of apoptosis revealed by morphological features as well as flow cytometric analysis of the DNA content. Interestingly however, cytogenetic damage (micronuclei induction) was observed in spheroids that were continuously exposed to 2-DG. Short-term exposure to 2-DG resulted in a significant increase in ROS levels and a reduction in the levels of unoxidized cardiolipin as measured by NAO suggesting the involvement of mitochondria leakiness leading to oxidative stress which, could be responsible for apoptotic cell death observed under these conditions. However, continuous exposure to 2-DG resulted in a moderate level of oxidative stress leading to the genomic instability. Preliminary studies also show that spheroids exposed continuously to 2-DG result in the development of resistance to certain chemotherapeutic drugs which could be correlated with elevated levels of mdr1. The present results suggest that a persistent down-regulation of glycolysis (as seen here with continuous exposure to 2-DG) could activate prosurvival responses besides inducing moderate levels of oxidative stress resulting in the development of resistance against therapeutic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call