Abstract

Fetal growth restriction is associated with reduced pancreatic β-cell mass, contributing to impaired glucose tolerance and diabetes. Exercise training increases β-cell mass in animals with diabetes and has long-lasting metabolic benefits in rodents and humans. We studied the effect of exercise training on islet and β-cell morphology and plasma insulin and glucose, following an intraperitoneal glucose tolerance test (IPGTT) in juvenile and adult male Wistar-Kyoto rats born small. Bilateral uterine vessel ligation performed on day 18 of pregnancy resulted in Restricted offspring born small compared with sham-operated Controls and also sham-operated Reduced litter offspring that had their litter size reduced to five pups at birth. Restricted, Control, and Reduced litter offspring remained sedentary or underwent treadmill running from 5 to 9 or 20 to 24 wk of age. Early life exercise increased relative islet surface area and β-cell mass across all groups at 9 wk, partially restoring the 60-68% deficit (P < 0.05) in Restricted offspring. Remarkably, despite no further exercise training after 9 wk, β-cell mass was restored in Restricted at 24 wk, while sedentary littermates retained a 45% deficit (P = 0.05) in relative β-cell mass. Later exercise training also restored Restricted β-cell mass to Control levels. In conclusion, early life exercise training in rats born small restored β-cell mass in adulthood and may have beneficial consequences for later metabolic health and disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call