Abstract
Electrical load forecasting plays a crucial role in planning and operating power plants for utility factories, as well as for policymakers seeking to devise reliable and efficient energy infrastructure. Load forecasting can be categorized into three types: long-term, mid-term, and short-term. Various models, including artificial intelligence and conventional and mixed models, can be used for short-term load forecasting. Electricity load forecasting is particularly important in countries with restructured electricity markets. The accuracy of short-term load forecasting is crucial for the efficient management of electric systems. Precise forecasting offers advantages for future projects and economic activities of power system operators. In this study, a novel integrated model for short-term load forecasting has been developed, which combines the wavelet transform decomposition (WTD) model, a radial basis function network, and the Thermal Exchange Optimization (TEO) algorithm. The performance of this model was evaluated in two diverse deregulated power markets: the Pennsylvania-New Jersey-Maryland electricity market and the Spanish electricity market. The obtained results are compared with various acceptable standard forecasting models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.