Abstract

Abstract Moderate severity disturbances, those that do not result in stand replacement, play an essential role in ecosystem dynamics. Despite the prevalence of moderate severity disturbances and the significant impacts they impose on forest functioning, little is known about their effects on forest canopy structure and how these effects differ over time across a range of disturbance severities and disturbance types. Using longitudinal data from the National Ecological Observatory Network project, we assessed the effects of three moderate severity press disturbances (beech bark disease, hemlock woolly adelgid and emerald ash borer, which are characterized by continuous disturbance and sustained mortality) and three moderate severity pulse disturbances (spring cankerworm moth, spongy moth and ground fire, which are associated with discrete and relatively short mortalities) on temperate forest canopy structure in eastern US. We studied (1) how light detection and ranging (LiDAR)‐derived metrics of canopy structure change in response to disturbance and (2) whether initial canopy complexity offsets impact of disturbances on canopy structure over time. We used a mixed‐effects modelling framework which included a non‐linear term for time to represent changes in canopy structure caused by disturbance, and interactions between time and both disturbance intensity and initial canopy complexity. We discovered that high intensity of both press and pulse disturbances inhibited canopy height growth while low intensity pulse disturbances facilitated it. In addition, high intensity pulse disturbances facilitated increases in the complexity of the canopy over time. Concerning the impact of initial canopy complexity, we found that the initial canopy complexity of disturbed plots altered the effects of moderate disturbances, indicating potential resilience effects. Synthesis. This study used repeated measurements of LiDAR data to examine the effects of moderate disturbances on various dimensions of forest canopy structure, including height, openness, density and complexity. Our study indicates that both press and pulse disturbances can inhibit canopy height growth over time. However, while the impact of press disturbances on other dimensions of canopy structure could not be clearly detected, likely because of compensatory growth, the impact of pulse disturbances over time was more readily apparent using multi‐temporal LiDAR data. Furthermore, our findings suggest that canopy complexity might help to mitigate the impact of moderate disturbances on canopy structures over time. Overall, our research highlights the usefulness of multi‐temporal LiDAR data for assessing the structural changes in forest canopies caused by moderate severity disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call