Abstract

Little is known about the bonfire impact on microbial properties in soil. This work aimed to study moderate- to high-severity experimental burning (250 °C) compared to unburned Cambisol in a natural Mediterranean environment (Croatia) on selected soil properties. The soil was sampled immediately and 1, 2, 4, and 6 months after the fire. The fire increased the mean weight diameter, water stable aggregates, and water repellence in different soil fractions, and the observed effect was the strongest immediately after the fire. It also altered soil pH, electrical conductivity, total nitrogen carbon, and sulphur content, and completely destroyed carbapenem-resistant bacteria, but did not significantly affect the soil’s mineralogical properties. Six months after the fire, most microbial properties (save for pH) returned to near control values. Heterotrophic, sporogenic, and phosphate-solubilising bacteria started to recover after a month, whereas the population of carbapenem-resistant bacteria was destroyed initially, but recovered by the fourth month after the fire. Dehydrogenase activity was not significantly affected, but proper recovery started four months after the fire. Even though Cambisol showed some resilience to fire and its properties mostly returned to normal by the sixth month, and a full recovery is expected to occur later, as vegetation returns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.