Abstract

Purpose: Hematopoietic growth factor(s) (GF) may exert positive effects in vitro or in vivo on the survival of hematopoietic stem and progenitor cells after accidental or therapeutic total body irradiation. Methods and Materials: We studied the clonogenic survival and DNA repair of irradiated (0.36, 0.73, and 1.46 Gy) CD34 + cord blood (CB) cells after short-term incubation (24 h) with GFs. CD34 + cells were stimulated with basic fibroblast growth factor (bFGF), stem cell factor/c-kit ligand (SCF), interleukin-3 (IL-3), IL-6, leukemia inhibitory factor (LIF), and granulocyte-monocyte colony stimulating factor (GM-CSF) alone or in combination in short-term serum-free liquid suspension cultures (LSC) immediately after irradiation and then assayed for clonogenic progenitors. DNA repair was evaluated by analysis of DNA strand breaks using the comet assay. Survival of CFU-GM, BFU-E, and CFU-Mix was determined and dose–response curves were fitted to the data. Results: The radiobiological parameters (D 0 and n) showed significant GF(s) effects. Combination of IL-3 with IL-6, SCF or GM-CSF resulted in best survival for CFU-GM BFU-E and CFU-Mix, respectively. Combinations of three or more GFs did not increase the survival of clonogenic CD34 + cells compared to optimal two-factor combinations. The D 0 values for CFU-GM, BFU-E, and CFU-Mix ranged between 0.56–1.15, 0.41–2.24, and 0.56–1.29 Gy, respectively. As for controls, the curves remained strictly exponential, i.e., all survival curves were strictly exponential without any shoulder (extrapolation numbers n = 1 for all tested GF(s). DNA repair capacity of CD34 + cells determined by comet assay, was measured before, immediately after irradiation, as well as 30 and 120 min after irradiation at 1 Gy. Notably, after irradiation the 2-h repair of cytokine-stimulated and unstimulated CD34 + cells was similar. Conclusion: Our data indicate that increased survival of irradiated CB CD34 + cells after short-term GF treatment is mediated through proliferative GF effects on the surviving fraction but not through improved DNA repair capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.