Abstract
Although there is a growing interest in the association between ambient temperatures and mortality, little evidence is available for Thessaloniki, the second largest city of Greece. In this study, we present an assessment of the effects of temperature on daily mortality from 2006 to 2016 in the urban area of Thessaloniki, by describing the exposure-lag-response association between temperature and cause-specific mortality with the use of a distributed lag non-linear model (DLNM). A J-shaped relationship was found between temperature and mortality. The highest values of risk were evident for respiratory (RR > 10) and cardiovascular causes (RR > 3), probably due to the fact that health status of individuals with chronic respiratory and cardiovascular diseases rapidly deteriorates during hot periods. Cold effects had longer lags of up to 15 days, whereas heat effects were short-lived, up to 4 days. Percentage change in all- and cause-specific mortality per 1 °C change above and below Minimum Mortality Temperature showed a larger increase for all-cause mortality in heat (1.95%, 95% CI: 1.07–2.84), in contrast to a smaller increase in cold (0.54%, 95% CI: 0, 1.09). Overall, 3.51% of all-cause deaths were attributable to temperature, whereas deaths attributed to heat (2.34%) were more than deaths attributed to cold (1.34%). The findings of this study present important evidence for planning public-health interventions, to reduce the health impact of extreme temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.