Abstract

Stroke is a significant global cause of disability and death, and its burden has been on the rise, while ambient air pollution has been conclusively linked to stroke incidence. However, knowledge about effects of atmospheric oxidation on stroke and its interactions with fine particles (PM2.5) are still limited. In this study, we investigated the short-term effects of ambient NO2, O3, and their combined oxidation (Owt) on first-ever stroke, based on data from the China National Stroke Screening Survey (CNSSS) conducted from 2013 to 2015. We found significant association between ambient NO2 exposure at lag0 day with first-ever stroke, with a 13.1 % (95 % CI: 3.5 %, 23.6 %) increase in the first-ever stroke risk per 10 μg/m3 exposure. We also found a significant interaction between NO2 and PM2.5 (p < 0.05): first-ever stroke risk increased 23.8 % (95 % CI: 9.6 %, 39.8 %) per 10 μg/m3 NO2 exposure in population exposed to higher PM2.5 concentrations, while no significant association was found in population exposed to lower PM2.5 concentrations. The results of stratified analyses indicated that physical inactivity enhanced the detrimental effects of O3 and Owt exposure, while smoking and transient ischemic attack (TIA) history enhanced the detrimental effects of NO2 exposure. However, TIA history appeared to mitigate the adverse effects of O3 exposure. This study is helpful to better understand the impact of ambient oxidation on stroke, as well as its interaction with PM2.5, and has implications for policies and standards for atmospheric protection and governance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.