Abstract
In remote areas, wild-fires often must be controlled by applying fire-retardants and suppressants dropped from small aircraft. However, impacts of these chemicals on natural stream ecosystems are poorly known. Unintentional aerial application of fire-fighting chemicals (Phos-Chek WD-881 and ForExspan S) onto two small streams during a natural wildfire on Kangaroo Island, South Australia, provided an opportunity to study the short-term effects on water chemistry and aquatic invertebrates. Within 2 weeks of application, samples of water and macroinvertebrates were collected from sites upstream of the application point, within the zone of application, and downstream where burning had been controlled on two streams. Three sites on a reference stream in the same sub-catchment that had been burned by the same fire but without application of fire-suppressants were also sampled. All sites were resampled three months later (within two weeks of the first flushing rains). There were no marked differences in water quality among the sites on the reference stream but in one of the impacted streams where flow had ceased before the fire, dissolved and total phosphorus concentrations were elevated at the site where the fire-suppressants were applied. Phosphorus concentrations were reduced 2–3-fold at this site after brief flushing by rain. Conversely, dissolved and total N and P concentrations at the other impacted stream that flowed permanently did not differ among the sites and there was no evidence for persistent changes to water quality from the applied fire-suppressant foams. Taxon richness was higher at the application and downstream sites than at upstream sites in the two impacted streams. There were also no discernible effects of the fire-suppressants on macroinvertebrate assemblage composition or taxon richness within the two streams two weeks after the chemical application or soon after flushing rains. Assemblage composition in the temporary stream was significantly different from that in the reference and the other impacted stream but also appeared unaffected by the fire-suppressants. The lack of impact on resident stream macroinvertebrates may result partly from their inherent high tolerance to the harsh physical and chemical conditions of these streams, many of which typically cease flow in summer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.