Abstract

Soil amendments with organic waste products (OWPs) have been widely supported in Europe to improve soil fertility, causing wide changes in the microbial community structure and diversity, especially in the short-term period. Those changes are known to affect the volatile organic compound (VOC) emissions by soil. This work aimed to characterize, in terms of quantity and composition, the effect of green waste and sludge (GWS) application on soil VOC emissions and microbial community 49 h after the last GWS application. Two different soil samples were compared to test the effect of the soil history on VOC emissions and microbial communities. For this reason, we chose a soil that received GWS input for 20 years (GWS sample) and one that did not receive any organic input during the same period (CN sample). Furthermore, samples were manipulated to generate three microbial dilution diversity gradients (low, medium, and high). Results showed that Bacteroidetes phyla took advantage of the GWS application in all samples, increasing their relative abundance by 22% after 49 h, while the Proteobacteria phylum was penalized by the GWS amendment, passing from 58% to 49% relative abundance 49 h after the GWS application. Microbial structure differences between microbial diversity dilution levels remained even after the GWS application. GWS amendment induced a change in the emitted VOC profiles, especially in samples used to receiving GWS. GWS amendment doubled the VOC emissions from samples used to receiving GWS after 49 h. Finally, the microbial community was strongly correlated to the VOC emissions. Firmicutes, Proteobacteria, Actinobacteria, and Crenarchaeota were positively correlated (Pearson coefficient > 0.6), while other phyla, such as Bacteroidetes and Verrucomicrobia, were found to be negatively correlated (Pearson coefficient < −0.6) to the VOC emissions. After the addition of GWS, these correlations shifted from positive to negative and from negative to positive.

Highlights

  • The recycling of organic matter via amendment with organic waste products (OWPs) is an extensively used agronomic practice to increase soil fertility

  • green waste and sludge (GWS) is a co-compost made of 70% of green waste and 30% sewage sludge, and it is widely used as fertilizer since mixing sewage sludge with green waste reduces the risks of environmental contaminations, promoting decreases in the levels of heavy metals and pathogens compared to sewage sludge OWP [7]

  • The long-term experiment consists of amending the site every two years, in a randomized block design, with 4 different organic waste products: BIOW, GWS, FYM, and MSW; plus a control without organic input (CN)

Read more

Summary

Introduction

The recycling of organic matter via amendment with organic waste products (OWPs) is an extensively used agronomic practice to increase soil fertility. This practice has been supported in Europe (European Commission, 2010) to contrast the decrease of soil organic matter content due to intensive agricultural practices [1] and improve waste recycling. The effects of the OWPs amendment on soil chemical and physical characteristics and the microbial community depend on the duration of the OWPs amendment to the soil and the type of OWP [6].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call