Abstract

In addition to functioning as an energy sensor switch, AMPK plays a key role in the maintenance of cardiovascular homeostasis. However, obesity disrupts AMPK signaling, contributing to endothelial dysfunction and cardiovascular disease. This study aimed to elucidate if a short-term dietary intervention consisting in replacing the high-fat diet with a standard diet for 2 weeks could reverse obesity-induced endothelial dysfunction via AMPK-CREB activation. For this, 5-week-old male C57BL6J mice were fed a standard (Chow) or a high-fat (HF) diet for 8 weeks. The HF diet was replaced by the chow diet for the last 2 weeks in half of HF mice, generating 3 groups: Chow, HF and HF-Chow. Vascular reactivity and western-blot assays were performed in the thoracic aorta. Returning to a chow diet significantly reduced body weight and glucose intolerance. Relaxant responses to acetylcholine and the AMPK activator (AICAR) were significantly impaired in HF mice but improved in HF-Chow mice. The protein levels of AMPKα, p-CREB and antioxidant systems (heme oxygenase-1 (HO-1) and catalase) were significantly reduced in HF but normalized in HF-Chow mice. Improving dietary intake by replacing a HF diet with a standard diet improves AMPK-mediated responses due to the upregulation of the AMPK/CREB/HO-1 signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call