Abstract

With the consumption of new energy and the variability of user activity, accurate and fast demand forecasting plays a crucial role in modern power markets. This paper considers the correlation between temperature, wind speed, and real-time electricity demand and proposes a novel method for forecasting short-term demand in the power market. Kernel Support Vector Machine is first used to classify real-time demand in combination with temperature and wind speed, and then the temporal convolutional network (TCN) is used to extract the temporal relationships and implied information of day-ahead demand. Finally, the Gradient Boosting Regression Tree is used to forecast daily and weekly real-time demand based on electrical, meteorological, and data characteristics. The validity of the method was verified using a dataset from the ISO-NE (New England Electricity Market). Comparative experiments with existing methods showed that the method could provide more accurate demand forecasting results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call