Abstract

Abstract Wear is one of the major causes that affect the performance and reliability of tribo-systems. To mitigate its adverse effects, it is necessary to monitor the wear progress so that preventive maintenance can be timely scheduled. An online visual ferrograph (OLVF) apparatus is used to obtain online measurements of wear particle quantities, and monitor the wearing of a four-ball tribometer under different lubrication conditions, and several popular deep learning algorithms are evaluated for their effectiveness in providing maintenance decisions. The obtained data are converted to the cross-sectional time series (CSTS), for its effectiveness in representing the variation trends of multiple variables, and the data are used as the input to the deep learning algorithms. Experimental results indicate that the CSTS together with the bidirectional long short-term memory (Bi-LSTM) architecture outperforms other tested settings in terms of the mean-squared error (MSE). Increased prediction accuracy is observed for tribological pairs with a stochastically changing coefficient of friction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.