Abstract

Fluctuations in organic loading rate are frequently experienced in practical-scale anaerobic digestion systems. These impose shocks to the microbiome leading to process instability and failure. This study elucidated the short-term changes in biochemical pathways and the contributions of microbial groups involved in anaerobic digestion with varying organic load shocks. A mixture of starch and hipolypeptone corresponding to a carbon-to‑nitrogen ratio of 25 was used as substrate. Batch vial reactors were run using acclimatized sludge fed with organic load varying from 0 to 5 g VS/L. Methane yield decreased with increasing organic load. The microbiome alpha diversity represented as the number of operational taxonomic units (OTUs) and the Shannon index both decreased with organic load indicating microbiome specialization. The biochemical pathways predicted using PICRUSt2 were analyzed along with the corresponding contributions of microbial groups leading to a proposed pathway of substrate utilization. Genus Trichococcus (order Lactobacillales) increased in contribution to starch degradation pathways with increase in organic load while genus Macellibacteroides (order Bacteroidales) was prominent in contribution to bacterial anaerobic digestion pathways. Strictly acetoclastic Methanosaeta increased in prominence over hydrogenotrophic Methanolinea with increase in organic load. Results from this study provide better understanding of how anaerobic digesters respond to organic load shocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.