Abstract

ABSTRACT With regard of the problems of soil acidification and soil degradation caused by high intensive planting in south China, a 2-year pot experiment consisting of six harvests under a rice–rice–vegetable rotation cropping system was conducted to assess the effects of NPK+ rice straw (RS) and combined application of RS with peanut bran, biochar, and organic fertilizer on soil chemical and microbial characteristics in paddy soil. The control treatment received chemical fertilizer alone. Results showed that RS and the combination of RS with organic ameliorants, especially NPK+ rice straw + biochar (RSBC) treatment led to the greatest improvement of soil pH, soil organic carbon, microbial biomass carbon, and total nitrogen (TN) content, and urease (UE), acid phosphatase (ACP) and catalase (CAT) activities concurrently without yield sacrificing, which inferred that RSBC treatment could be an effective measure to alleviate soil acidification, boost carbon sequestration and nutrients content as well as soil enzyme activities in rice-rice-vegetable rotation system. Besides, Pearson’s correlation analysis showed that soil mineral nitrogen (Nmin) content was negatively related to pH, and the available potassium (AK) content was positively related to UE and CAT activity but negatively related to ACP activity. Canonical correspondence analysis demonstrated the Nmin and AK explained 27.2% and 13.7% of the variation in microbial species, respectively. Therefore, it is believed that soil Nmin and AK content could be the primary factors of soil microbial properties under the rice-rice-vegetable rotation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.