Abstract

Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker (“cocktail-party”) scenario. Forty-five healthy participants were tested, including younger (19–29 years; n = 21) and older (66–76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under “cocktail-party” conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under “cocktail-party” conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.

Highlights

  • Numerous lines of human and animal research have provided clear evidence that the representation of sound sources in space can be modulated by vision

  • These results demonstrated an age-specific effect of audiovisual spatial training on neurophysiological correlates of auditory selective spatial attention in a simulated “cocktail-party” scenario

  • Even though we failed to find specific effects of audiovisual-congruency training at the behavioral level, the present study extended these previous approaches by showing that electrophysiological correlates of audiospatial attention in the presence of multiple distractor sources were enhanced by this type of training, while no effect was observed for visual-feedback training

Read more

Summary

Introduction

Numerous lines of human and animal research have provided clear evidence that the representation of sound sources in space can be modulated by vision. Exposure to a consistent audiovisual spatial disparity over a certain period of time can induce a systematic shift in sound localization such that the representation of the auditory space is shifted to that of the visual space (Helmholtz, 1867; Stratton, 1896, 1897; Held, 1955; Kalil and Freedman, 1967; Canon, 1970, 1971; Radeau and Bertelson, 1977, 1978; Recanzone, 1998; Lewald, 2002b) These crossmodal adaptive changes, which can emerge over short time scales from seconds to minutes (cf Bosen et al, 2018), have been termed ventriloquism after-effect. Results obtained in blind and blindfolded sighted humans as well as in patients with visual-field loss demonstrating specific alterations of sound localization were in accordance with this view (e.g., Zwiers et al, 2001a,b; Lewald, 2002a,c, 2013; Lewald et al, 2009a,b, 2013; Feierabend et al, 2019)

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call