Abstract

Methylglyoxal (MG) is a by-product of glycolysis. In pathological conditions, particularly diabetes mellitus, this molecule is unbalanced, causing widespread protein glycation. In addition to protein glycation, other effects resulting from high levels of MG in the central nervous system may involve the direct modulation of GABAergic and glutamatergic neurotransmission, with evidence suggesting that the effects of MG may be related to behavioral changes and glial dysfunction. In order to evaluate the direct influence of MG on behavioral and biochemical parameters, we used a high intracerebroventricular final concentration (3μM/μL) to assess acute effects on memory and locomotor behavior in rats, as well as the underlying alterations in glutamatergic and astroglial parameters. MG induced, 12h after injection, a decrease in locomotor activity in the Open field and anxiolytic effects in rats submitted to elevated plus-maze. Subsequently, 36h after surgery, MG injection also induced cognitive impairment in both short and long-term memory, as evaluated by novel object recognition task, and in short-term spatial memory, as evaluated by the Y-maze test. In addition, hippocampal glutamate uptake decreased and glutamine synthetase activity and glutathione levels diminished during seventy-two hours after infusion of MG. Interestingly, the astrocytic protein, S100B, was increased in the cerebrospinal fluid, accompanied by decreased hippocampal S100B mRNA expression, without any change in protein content. Taken together, these results may improve our understanding of how this product of glucose metabolism can induce the brain dysfunction observed in diabetic patients, as well as in other neurodegenerative conditions, and further defines the role of astrocytes in disease and therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.