Abstract
Adipose tissue and skeletal muscle are endocrine organs, secreting substances that have been implicated in obesity-related disorders. This study examined short-term beta-adrenergic regulation of circulating leptin, adiponectin and interleukin-6 (IL-6) concentrations and secretion from abdominal subcutaneous adipose tissue and muscle (IL-6) in vivo in lean and obese subjects. Systemic concentrations and net fluxes of leptin, adiponectin and IL-6 across abdominal subcutaneous adipose tissue and forearm skeletal muscle (IL-6) were assessed before and during beta-adrenergic stimulation (intravenous isoprenaline infusion) in 13 lean and 10 obese men. Basal circulating leptin concentrations were higher in the obese (p < 0.001), while circulating adiponectin (p = 0.45) and IL-6 concentrations (p = 0.41) were not different between groups. beta-Adrenergic stimulation decreased leptin concentrations in both groups (p < 0.01), but did not reduce net abdominal subcutaneous adipose tissue leptin release. Increased leptin clearance and/or decreased leptin secretion from other fat depots may explain the reduction in leptin concentrations. Adiponectin concentrations remained unchanged during beta-adrenergic stimulation in both groups. beta-Adrenergic stimulation increased IL-6 concentration, which was more pronounced in the obese (p = 0.01 vs. lean). This cannot be explained by increased IL-6 release per unit abdominal subcutaneous adipose tissue and muscle but might be because of the increased fat mass and fat-free mass at whole-body level. Short-term beta-adrenergic stimulation decreases leptin concentrations, which cannot be explained by reduced net leptin release from abdominal subcutaneous adipose tissue, while it elevates IL-6 concentration partly by increased release from this fat depot and muscle. Finally, beta-adrenergic stimulation has no short-term regulatory role in adiponectin secretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.