Abstract

In this paper we show that a construction of Trevisan, solving the privacy amplification problem in the classical setting, also solves the problem when the adversary may keep quantum storage, thereby giving the first such construction with logarithmic seed length. The technique we use is a combination of Trevisan's approach of constructing an extractor from a black-box pseudorandom generator, together with locally list-decodable codes and previous work done on quantum random access codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.