Abstract

The equilibrium short-range order (SRO) in Cu-Pd alloys is studied theoretically. The evolution of the Fermi surface-related splitting of the (110) diffuse intensity peak with changing temperature is examined. The results are compared with experimental observations for electron-irradiated samples in a steady state, for which the temperature dependence of the splitting was previously found in the composition range from 20 to 28 at.% Pd. The equilibrium state is studied by analysing available experimental and theoretical results and using a recently proposed alpha-expansion theory of SRO which is able to describe the temperature-dependent splitting. It is found that the electronic structure calculations in the framework of the Korringa-Kohn-Rostoker coherent potential approximation overestimate the experimental peak splitting. This discrepancy is attributed to the shift of the intensity peaks with respect to the positions of the corresponding reciprocal-space minima of the effective interatomic interaction towards the (110) and equivalent positions. Combined with an assumption about monotonicity of the temperature behaviour of the splitting, such a shift implies an increase of the splitting with increasing temperature for all compositions considered in this study. The alpha-expansion calculations seem to confirm this conclusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call