Abstract
Detailed information on the atomic arrangement of glassy Cu54Hf46, Cu61Hf39 and Cu69Hf31 alloys has been obtained by the reverse Monte Carlo (RMC) simulation using high-energy X-ray diffraction and neutron diffraction data as input. Dominant cluster units are identified by means of the radical Voronoï tessellation technique. Cu-centred clusters show a stronger ordering level than the Hf-centred ones. Results are compared with those previously reported for analogous binary amorphous systems such as Zr–Cu and Zr–Ni. Additionally, the thermal stability of the studied Cu–Hf alloys has been inspected by in-situ high-temperature X-ray diffraction and differential scanning calorimetry measurements. A different structural evolution is observed for Cu69Hf31 compared with Cu54Hf46 and Cu61Hf39. Products of devitrification are identified and quantified. The better glass forming ability of Cu54Hf46 and Cu61Hf39 compared with Cu69Hf31 is explained in the view of short range order differences of glassy states and corresponding crystalline phases formed during devitrification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.