Abstract

Residual dipolar couplings in the denatured state of bovine acyl-coenzyme A binding protein (ACBP) oriented in strained polyacrylamide gels have been shown to be a sensitive, sequence-specific probe for residual secondary structure. Results supporting this were obtained by comparing residual dipolar couplings under different denaturing conditions. The data were analyzed using the program molecular fragment replacement (MFR), which demonstrated α-helix propensity in four isolated stretches along the protein backbone, and these coincide with the location of native helices. This is in full agreement with earlier findings based on secondary chemical shift values. Furthermore, N–H residual dipolar couplings provided direct evidence for the existence of native-like hydrophobic interactions in the acid-denatured state of ACBP at pH 2.3. It was shown that replacement of the hydrophobic side-chain of residue Ile27 with alanine in helix A2 leads to large decreases of residual dipolar couplings in residues that form helix A4 in the native state. It is suggested that the Ile to Ala mutation changes the probability for the formation of long-range interactions, which are present in the acid-denatured state of the wild-type protein. These long-range interactions are similar to those proposed to form in the transition state of folding of ACBP. Therefore, the application of residual dipolar couplings in combination with a comparative mutation study has demonstrated the presence of precursors to the folding transition state under acid-unfolding conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.