Abstract
We model the non-local dynamics of vegetation communities and interpret the formation of vegetation patterns as a spatial instability of intrinsic origin: the wavelength of the patterns predicted within the framework of this approach is determined by the parameters governing the dynamics rather than by boundary conditions and/or geometrical constraints. The spatial periodicity results from an interplay between short-range co-operative interactions and long-range self-inhibitory interactions inside the vegetation community. The influence of environmental anisotropies on pattern symmetry and orientation is discussed. As a case study, the approach is applied to a system of vegetation bands situated in the north-west of Burkina Faso. The parameters describing the co-operative and inhibitory interactions at the origin of the patterns are evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.