Abstract

We report ultrabroadband optical parametric chirped-pulse amplification (OPCPA) with an output pulse energy of up to 250 μJ from an OPCPA stage pumped by short pulses of ∼100 fs duration at 395 nm wavelength. In order to generate ultrahigh-power pulses in the few-cycle regime, such a short-pulse-pumped OPCPA scheme appears to be a promising route, by virtue of its inherently advantageous features. Firstly, the stretching and compression fidelity as well as the pulse contrast are increased due to the short pump- and seed-pulse durations. Additionally, the higher pump powers allow for using thinner OPA crystals, thereby increasing the amplification bandwidth that will support even shorter pulse durations. We present experimental results where the effective bandwidth of the seed pulses was increased in the OPCPA process resulting in a shortened transform-limited pulse duration in addition to the energy gain. The amplified pulses from OPCPA have been compressed to the sub-10-fs, few-cycle range by using chirped mirrors. Scaling of this short-pulse-pumped OPCPA technique for few-cycle-pulse generation to the highest (TW–PW) power levels is also planned (Petawatt Field Synthesizer project at the Max-Planck-Institut für Quantenoptik).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.