Abstract

RNA-RNA interactions have increasingly been recognized for their potential to shape the mesoscale properties of biomolecular condensates, influencing morphology, organization, and material state through networking interactions. While most studies have focused on networking via Watson-Crick base pairing interactions, previous work has suggested a potential for noncanonical RNA-RNA interactions to also give rise to condensation and alter overall material state. Here, we test the phase separation of short polyA RNA (polyrA) homopolymers. We discover and characterize the potential for short polyrA sequences to form RNA condensates at lower Mg2+ concentrations than previously observed, which appear as internally arrested droplets with slow polyrA diffusion despite continued fusion. Our work also reveals a negative cooperativity effect between the effects of Mg2+ and Na+ on polyrA condensation. Finally, we observe that polyrA sequences can act as promoters of phase separation in mixed sequences. These results demonstrate the potential for noncanonical interactions to act as networking stickers, leading to specific condensation properties inherent to polyrA composition and structure, with implications for the fundamental physical chemistry of the system and function of polyA RNA in biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.