Abstract
Circadian (24 hour) PERIOD (PER) protein oscillation is dependent on the double-time (dbt) gene, a casein kinase Ivarepsilon homolog [1-3]. Without dbt activity, hypophosphorylated PER proteins over-accumulate, indicating that dbt is required for PER phosphorylation and turnover [3,4]. There is evidence of a similar role for casein kinase Ivarepsilon in the mammalian circadian clock [5,6]. We have isolated a new dbt allele, dbt(ar), which causes arrhythmic locomotor activity in homozygous viable adults, as well as molecular arrhythmicity, with constitutively high levels of PER proteins, and low levels of TIMELESS (TIM) proteins. Short-period mutations of per, but not of tim, restore rhythmicity to dbt(ar) flies. This suppression is accompanied by a restoration of PER protein oscillations. Our results suggest that short-period per mutations, and mutations of dbt, affect the same molecular step that controls nuclear PER turnover. We conclude that, in wild-type flies, the previously defined PER'short domain' [7,8] may regulate the activity of DBT on PER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.