Abstract

Using a newly developed envelope function approximation model that includes interface effects, several InAs/GaSb type-II superlattices (SLs) were designed for uncooled mid-infrared detector applications. The 4 micron cutoff could be achieved with several SL designs. Superlattices with shorter periods have larger intervalence band separations than larger-ones, which could increase the optical signal and reduce the detector noise, thus making room temperature operation possible. To test these possibilities, several short-period SLs were grown by molecular-beam epitaxy and their optical properties with reducing SL period were studied by band-edge absorption, photoconductivity and photoluminescence measurements. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call