Abstract

Geysers are episodic features with variable eruption intervals that range from minutes to years. Although many previous studies on geysers have focused on subsurface properties and processes such as plumbing geometry and recharge process, it is known that erupting fluid column exhibits short-term behaviors such as individual water jets from the vent. In the present study, we conducted observations at Onikobe geyser, NE Japan, a relatively small geyser (geysering well) erupting water up to ∼6–8 m every ∼10 min and observed the erupting fluid column using a thermal infrared camera and an acoustic sensor. We succeed in tracking the water jets by analyzing spatio-temporal temperature map obtained from the thermal infrared observation, which clearly shows the eruptions at Onikobe geyser are not completely stationary but rather a series of intermittent jets with a short period interval of <1 s. We estimate the exit velocity by fitting a ballistic model under the air drag condition of inertial resistance to the jet trajectory. The exit velocity and the averaged gas volume fraction of the erupting fluid are estimated to be ∼4–79 m/s and ∼0.93–0.96, respectively. The exit velocity is ∼30 m/s during the first bursts, then it rapidly increases to ∼50–80 m/s for ∼15 s, and then decreases to ∼20–30 m/s until ∼10 s before the eruption ends. Time series analyses of the thermal infrared and acoustic signals during an eruption indicate harmonic spectra with integer multiple peaks. The fundamental frequency showing ∼4 Hz at the beginning gradually decreases to ∼2 Hz for ∼15 s, keeps almost constant in the following 30 s, and then slightly increases near the end of the eruption. These harmonic spectra may be caused by a resonance mechanism, non-linear fluid motion, and/or subsurface two-phase flow. We discuss the case of a closed organ-pipe resonance in a subsurface crack and attribute the frequency decrease to a decrease in the water level in the crack (an increase in the length of the resonating liquid-vapor column) and/or a decrease in the gas volume fraction of the liquid-vapor mixture in the crack. Since such harmonic characteristics are observed at other geysers, further simultaneous observation of the short-period oscillations on the erupting column proposed in this study with seismic observations of harmonic tremor may provide an improved understanding of geyser subsurface phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call