Abstract

BackgroundOligogalacturonides (OGs) are important components of damage-associated molecular pattern (DAMP) signaling and influence growth regulation in plants. Recent studies have focused on the impact of long OGs (degree of polymerization (DP) from 10–15), demonstrating the induction of plant defense signaling resulting in enhanced defenses to necrotrophic pathogens. To clarify the role of trimers (trimeric OGs, DP3) in DAMP signaling and their impact on plant growth regulation, we performed a transcriptomic analysis through the RNA sequencing of Arabidopsis thaliana exposed to trimers.ResultsThe transcriptomic data from trimer-treated Arabidopsis seedlings indicate a clear activation of genes involved in defense signaling, phytohormone signaling and a down-regulation of genes involved in processes related to growth regulation and development. This is further accompanied with improved defenses against necrotrophic pathogens triggered by the trimer treatment, indicating that short OGs have a clear impact on plant responses, similar to those described for long OGs.ConclusionsOur results demonstrate that trimers are indeed active elicitors of plant defenses. This is clearly indicated by the up-regulation of genes associated with plant defense signaling, accompanied with improved defenses against necrotrophic pathogens. Moreover, trimers simultaneously trigger a clear down-regulation of genes and gene sets associated with growth and development, leading to stunted seedling growth in Arabidopsis.

Highlights

  • Oligogalacturonides (OGs) are important components of damage-associated molecular pattern (DAMP) signaling and influence growth regulation in plants

  • For bacterial pathogens it has been observed that the pectolytic enzymes from various species generate trimers from pectin [47,48,49,50,51], and we have previously shown that commercially available trimers have a similar effect when applied exogenously to plant tissue, as does culture filtrate from P. carotovorum and polygalacturonic acid degraded with pectolytic enzymes

  • The RNA sequencing data obtained in this study revealed significant differences in the gene expression of plants treated with trimers (183 genes downregulated and 517 genes up-regulated) compared to plants subjected to mock treatment (Additional file 1: Table S2)

Read more

Summary

Introduction

Oligogalacturonides (OGs) are important components of damage-associated molecular pattern (DAMP) signaling and influence growth regulation in plants. Recent studies have focused on the impact of long OGs (degree of polymerization (DP) from 10–15), demonstrating the induction of plant defense signaling resulting in enhanced defenses to necrotrophic pathogens. Enterobacterial softrot pathogens of the genus Pectobacterium include broad host-range pathogens that cause disease in a variety of plant species and economically important crops, such as potato [1, 5, 6]. Similar to many other necrotrophic brute force pathogens, resistance to broad host-range. The wide broad host-range gray mold pathogen Botrytis cinerea, capable of infecting more than 200 plant species, is one of the most comprehensively studied necrotrophic fungus. In Arabidopsis, enhanced plant resistance to Botrytis seems to be independent of the phytohormones SA and JA, but rather dependent on ET, PAD3 and the accumulation of the phytoalexin camalexin [17, 18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call