Abstract

We investigated the dependency of minority carrier lifetimes on the nitrogen concentration, temperature, and the injected carrier concentration for highly nitrogen-doped 4H-SiC epilayers. The minority carrier lifetimes greatly shortened when the nitrogen concentration exceeded 1018 cm−3 through enhancing direct band-to-band and Auger recombination and showed a slight variation in the temperature range from room temperature (RT) to 250 °C. The epilayer with a nitrogen concentration of 9.3 × 1018 cm−3 exhibited a very short minority carrier lifetime of 38 ns at RT and 43 ns at 250 °C. The short minority carrier lifetimes of the highly nitrogen-doped epilayer were confirmed to maintain the values even after the subsequent annealing of 1700 °C. 4H-SiC PiN diodes were fabricated by depositing a highly nitrogen-doped epilayer as a “recombination enhancing layer” between an n− drift layer free from basal plane dislocations and the substrate. The PiN diodes showed no formation of stacking faults and no increase in forward voltage during current conduction of 600 A/cm2 (DC), demonstrating that a highly nitrogen-doped buffer layer with a short minority carrier lifetime successfully suppresses the “bipolar degradation” phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call