Abstract
Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm−1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ∼40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ∼109.5 m multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10−8 cm−1 W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ∼1.1 × 10−7 cm−1 (MDL ∼ 3 ppbv) in 1 s and ∼1.1 × 10−8 cm−1 (MDL ∼ 330 pptv) in 150 s, respectively, with 1 W laser power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.