Abstract

Short-lived climate forcers (SLCFs) like methane, ozone and aerosols have a shorter atmospheric lifetime than CO2 and are often assumed to have a short-term effect on the climate system: should their emissions cease, so would their radiative forcing (RF). However, via their climate impact, SLCFs can affect carbon sinks and atmospheric CO2, causing additional climate change. Here, we use a compact Earth system model to attribute CO2 RF to direct CO2 emissions and to climate–carbon feedbacks since the pre-industrial era. We estimate the climate–carbon feedback contributed 93 ± 50 mW m−2 (~5%) to total RF of CO2 in 2010. Of this, SLCF impacts were −13 ± 50 mW m−2, made up of cooling (−115 ± 43 mW m−2) and warming (102 ± 26 mW m−2) terms that largely cancel. This study illustrates the long-term impact that short-lived species have on climate and indicates that past (and future) change in atmospheric CO2 cannot be attributed only to CO2 emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call