Abstract

Neurotrophin gene expression in adult brain varies according to physiological activity and following brain injury, suggesting a role in neuronal maintenance and plasticity. However, the exact roles and mechanisms of action of neurotrophins in the adult brain are still poorly understood. We have recently demonstrated that neurons of the adult mouse dentate gyrus can develop a conspicuous morphogenetic response to intrahippocampal injection of kainic acid. This response is correlated with long-lasting overexpression of the brain-derived neurotrophic factor gene, suggesting a causal relationship between molecular and structural changes. To test this hypothesis, brain-derived neurotrophic factor messenger RNA were sequestered in vivo by administration of antisense oligodeoxynucleotides. When administered before 20 h post-kainate, antisense oligodeoxynucleotides totally prevented the kainate-induced neuronal hypertrophy, while sense or missense sequences had no effect. On the other hand, the hypertrophic response was observed when antisense administration was begun 24 h post-kainate, indicating an involvement of brain-derived neurotrophic factor messenger RNA in the initiation of structural changes, but not in their evolution. The hypertrophy was blocked by inhibition of tyrosine kinase activities by K252a, suggesting an involvement of Trk high affinity receptors. Administration of human recombinant brain-derived neurotrophic factor without previous treatment by kainate failed to induce any morphogenetic response. These results show that a short activation of the brain-derived neurotrophic factor gene can, in association with neuronal activation by kainate, trigger dramatic and long-lasting morphological changes in adult neurons. A physiological role of brain-derived neurotrophic factor in adult brain could therefore be to link, by autocrine/paracrine action, activation of glutamate receptors and neuronal morphological adaptive responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.