Abstract

Optical gyros are attractive angular rotation sensors based on the Sagnac effect. The phase modulation technique is adopted to detect the weak resonant frequency shift induced by the Sagnac effect, which determines the detection sensitivity of the gyros. The Pound-Drever-Hall (PDH) modulation is a mature laser frequency stabilization technique that is widely recognized. A resonant optic gyro equipped with a short and high-finesse fiber ring resonator employing the high-frequency PDH modulation technique is proposed and demonstrated. The modulation index and frequency are optimized to maximize the slope of the demodulation curve. Compared with the low-frequency modulation, the high-frequency PDH modulation increases the slope of the demodulation curve by a factor of 1.23 and achieves an extra 15.8dB of laser frequency noise suppression. The bias stability of the gyro output is improved from 9.6°/h to 8°/h, and the equivalent lock-in frequency accuracy increases 12dB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.