Abstract

A certain family of symmetric matrices, with entries ± 1, is known to determine all the quartic relations that hold between multidimensional theta constants. Attention is drawn here to combinatorial properties of the shortest possible quartic relations, corresponding to vectors with minimal support in a certain eigenspace of such a matrix. A lower bound for the size of the support is established, exhibiting a “phase transition” at dimension four. The multiplicity-free eigenvectors with minimal support form an interesting combinatorial design, with a rich group of symmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.