Abstract

While approaching an object, echolocating bats decrease the amplitude of their vocalizations. This behavior is known as "echo-level compensation." Here, the activation pattern of the cortical FM-FM (frequency modulated) area of the mustached bat is assessed by using acoustic stimuli that correspond to sonar signals and their echoes emitted during echo-level compensation behavior. Activation maps were calculated from the delay response areas of 86 cortical neurons, and these maps were used to explore the topography of cortical activation during echolocation and its relation to the bats' cortical "chronotopy." Chronotopy predicts short echo-delays to be represented by rostral auditory cortex neurons while caudal neurons represent long echo-delays. The results show that a chronotopic activation of the cortex is evident only at loud pulse amplitudes [80-90 dB sound pressure level (SPL)]. In response to fainter pulse levels (60-70 dB SPL), as those produced as the animals zoom-in on targets, chronotopic activation of the cortex becomes less clear because units throughout the FM-FM area start firing, especially in response to short echo-delays. The fact that cortical activity is more widespread in response to combinations of short echo-delays and faint pulse amplitudes could represent an adaptation that enhances cortical activity in the late stages of echo-level compensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.