Abstract

Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors.

Highlights

  • Wild grapevine species (Vitaceae) are predominately native to the northern hemisphere; the production of grape cultivars is widely distributed, and the grapevine is one of the temperate fruit crops most frequently damaged by winter freezing temperatures

  • In ethylene insensitive transgenic birch, short days (SD) did not induce terminal bud set; the ethylene-insensitive trees did become dormant. These studies indicate that growth cessation and terminal bud set are distinct developmental events, and that dormancy is a separate developmental process (Rinne et al, 2001; Rhode et al, Abbreviations: ABA, Abscisic acid; ABAGE, ABA glucose ester; CV, coefficient of variation; D, day of treatment; DE, differentially expressed; DEG, differentially expressed gene; DPA, diphaseic acid; FDR, false discovery rate; Gene Set Enrichment Analysis (GSEA), gene set enrichment analysis; LT, lethal bud freezing temperature; LD or SD respectively, long day or short day; Principal component analysis (PCA), Principal components analysis; VRL or VRS respectively, Vitis riparia (VR) long or short photoperiod treatment; SVL or SVS respectively, Seyval (SV) long or short photoperiod treatment

  • The 13 h photoperiod, and differential response type of the V. riparia and Seyval grapevines used in this study, allowed the separation of general photoperiod responses from those involved in dormancy development

Read more

Summary

Introduction

Wild grapevine species (Vitaceae) are predominately native to the northern hemisphere; the production of grape cultivars is widely distributed, and the grapevine is one of the temperate fruit crops most frequently damaged by winter freezing temperatures. In ethylene insensitive transgenic birch, SD did not induce terminal bud set; the ethylene-insensitive trees did become dormant These studies indicate that growth cessation and terminal bud set are distinct developmental events, and that dormancy is a separate developmental process (Rinne et al, 2001; Rhode et al., Abbreviations: ABA, Abscisic acid; ABAGE, ABA glucose ester; CV, coefficient of variation; D, day of treatment; DE, differentially expressed; DEG, differentially expressed gene; DPA, diphaseic acid; FDR, false discovery rate; GSEA, gene set enrichment analysis; LT, lethal bud freezing temperature; LD or SD respectively, long day or short day; PCA, Principal components analysis; VRL or VRS respectively, Vitis riparia (VR) long or short photoperiod treatment; SVL or SVS respectively, Seyval (SV) long or short photoperiod treatment. VR_Photo_Time_Probesets, Significant V. riparia photoperiod x time probesets; SV_Photo_Time_Probesets, Significant Seyval photoperiod x time interaction probesets; Geno_Photo_Time_Probesets, Signficant genotype x photoperiod x time probesets; VR_Phase_Specific_DEGs, V. riparia dormancy phase specific differentially expressed genes; VR_Perception_Phase_DEGs, VR_Induction_Phase_DEGs, or VR_Dormancy_Phase_DEGs, V. riparia perception, induction or dormancy phase specific differentially expressed genes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call