Abstract

The natural initiation and growth of short cracks in Inconel®718 U-notch specimens has been studied at 600 °C in air. U notches were introduced through broaching, and hardness traces and optical microscopy on cross-sections through the U notch broaching showed that the broaching process had introduced a deformed, work hardened layer. Fatigue tests were conducted under load control using a 1-1-1-1 trapezoidal waveform, on specimens with as-broached and polished U-notches. Multi-site crack initiation occurred in the notch root. Many of the cracks initiated at bulge-like features formed by volume expansion of oxidising (Nb,Ti)C particles. In unstressed samples, oxidation of (Nb,Ti)C particles occurred readily, producing characteristic surface eruptions. Scanning electron microscopy on metallographic sections revealed some sub-surface (Nb,Ti)C oxidation and localised matrix deformation around oxidised particles. A mechanism for crack initiation by carbide expansion during oxidation is discussed. Surface short crack growth rates in the notch root of polished specimens were measured using an acetate replica technique. Observed short-crack growth rates were approximately constant across a wide range of crack lengths. However, there was a transition to rapid, accelerating crack growth once cracks reached several hundred micrometers in length. This rapid propagation in the latter stages of the fatigue life was assisted by crack coalescence. Polishing the U-notch to remove broaching marks resulted in a pronounced increase in fatigue life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.