Abstract

Fatigue crack growth rates have been determined on standard specimens containing long cracks (∼5–10mm) and on specimens containing two‐dimensional short cracks (∼0.10–0.50mm). Large differences have been observed indicating that at a given stress intensity factor short cracks propagate much faster than long cracks. Mouth opening displacement measurements for both specimen geometries have shown that the crack closure effect is largely responsible for the observed effect. These results are used to rationalize the behaviour of short cracks initiated from natural sites which were either graphite nodules or microshrinkage pores. The three‐dimensional aspect of these natural small cracks is analysed and discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.