Abstract

AbstractA significant part of the fatigue life is spent during short crack growth. Therefore, modelling of short fatigue crack growth offers an opportunity to improve the accuracy of numerical life assessment. Besides stating some general remarks on the short crack approach itself and on multiaxial fatigue criteria, a short crack growth based fatigue life prediction approach for multiaxial non‐proportional loading is presented. This approach accounts for the geometrical size effect by considering the geometry correction functions for semi‐elliptical surface cracks in inhomogeneous gradient stress fields. The geometrical size effect is becoming significant for notch radii smaller than four times the defined technical crack size. Additionally, life influencing factors due to the statistical size effect have been taken into account. The comparison of calculated and experimentally observed fatigue lives of shouldered shafts made of S460N with notch radii of 0.2 to 4.0 mm under non‐proportional tension and torsion loading yields a satisfying accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call