Abstract

The monoamine serotonin has been shown to regulate peripartal calcium homeostasis in multiparous cows and be a possible mitigation tool for hypocalcemia. Increasing circulating serotonin concentrations via prepartum intravenous (IV) administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) increases postpartum calcium concentrations. However, the ability of 5-HTP to be used orally or ruminally to alter circulating serotonin concentrations has not been established. Hence, our objective was to determine if ruminal administration of 5-HTP altered circulating serotonin concentrations. Four ruminally cannulated, nonlactating, nonpregnant multiparous Holstein dairy cows were randomly assigned to 1 of 4 treatments in a 4 × 4 replicated Latin square with 4-d periods separated by a 7-d washout. On d 1 and 2 of each period, cows were dosed with 1 of 4 experimental treatments as follows: (1) 0 mg/kg of body weight (BW) of 5-HTP, (2) 1 mg/kg of BW of intraruminal 5-HTP, (3) 2 mg/kg of BW of intraruminal 5-HTP, or (4) 1 mg/kg of BW of IV 5-HTP. Infusions were administered over a 1-h period, and all groups not receiving 5-HTP IV were infused with an equal volume of IV saline to that of IV 1 mg/kg of BW of 5-HTP treatment. Continuous serial blood samples were collected beginning after d 2 of treatment administration. Whole blood serotonin concentrations were higher in cows dosed with 2 mg/kg of BW of intraruminal 5-HTP immediately after dosing when compared with cows dosed with 0 mg/kg of BW of 5-HTP on d 2, but were similar on d 3 and 4 of the experimental period. Cows receiving IV 5-HTP had the highest circulating serotonin concentrations relative to all other treatments. These findings demonstrated that 2 intraruminal dosings of 5-HTP at 2 mg/kg of BW resulted in elevated circulating serotonin concentrations relative to the control immediately after dosing. This supports the potential for 5-HTP to be used orally to manipulate circulating serotonin concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.