Abstract

The objectives of this study were to evaluate the prediction performance of the single-step genomic BLUP method using a multi-trait random regression model in genomic evaluation for milk production traits of Chinese Holsteins, and investigate how parameters w, τ, and ω used in the construction of the combined relationship matrix (H) affected prediction accuracy and bias. A total of 2.8 million test-day records from 0.2 million cows were available for milk, protein, and fat yields. Pedigree information included 0.3 million animals and 7,577 of them were genotyped with medium-density single nucleotide polymorphism marker panels. Genotypes were imputed into Geneseek Genomic Profiler HD (GeneSeek, Lincoln, NE) including 77K markers. A reduced data set for evaluating models was extracted from the full data set by removing test-day records from the last 4 yr. Bull and cow validation populations were constructed for each trait. We evaluated the prediction performance of the multiple-trait multiple-lactation random regression single-step genomic BLUP (RR-ssGBLUP) models with different values of parameters w, τ, and ω in the H matrix, taking consideration of inbreeding. We compared RR-ssGBLUP with the multiple-trait multiple-lactation random regression model based on pedigree and genomic BLUP. De-regressed proofs for 305-d milk, protein, and fat yields averaged over 3 lactations, which were calculated from the full data set, were used for posteriori validations. The results showed that RR-ssGBLUP was feasible for implementation in breeding practice, and its prediction performance was superior to the other 2 methods in the comparison, including prediction accuracy and unbiasedness. For bulls, RR-ssGBLUP models with w0.05τ2.0ω1.0,w0.05τ2.5ω1.0, and w0.1τ1.6ω0.4 achieved the best performance for milk, protein, and fat yields, respectively. For cows, the RR-ssGBLUP with w0.2τ1.6ω0.4 performed the best for all 3 traits. The H matrix constructed with larger τ and smaller ω gave better convergence in solving mixed model equations. Among different RR-ssGBLUP models, the differences in validation accuracy were small. However, the regression coefficient indicating prediction bias varied substantially. The increase of w and τ, and decrease of ω, led to an increase in the regression coefficient. The results demonstrated RR-ssGBLUP is a good alternative to the multi-step approach, but the optimal choice of parameters should be found via preliminary validation study to achieve the best performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call