Abstract
The objective of this study was to compare 2 commonly used techniques for measuring methane emissions from ruminant animals: the GreenFeed (GF) system and the sulfur hexafluoride (SF6) technique. The study was part of a larger experiment in which a methane inhibitor, 3-nitrooxypropanol, fed at 4 application rates (0, 40, 60, and 80 mg/kg of feed dry matter) decreased enteric methane emission by an average of 30% (measured by both GF and SF6) in a 12-wk experiment with 48 lactating Holstein cows fed a total mixed ration. The larger experiment used a randomized block design and was conducted in 2 phases (February to May, phase 1, and June to August, phase 2), with 2 sets of 24 cows in each phase. Using both GF and SF6 techniques, methane emission data were collected simultaneously during experimental wk 2, 6, and 12 (phase 1) and 2, 9, and 12 (phase 2), which corresponded to a total of 6 sampling periods. During each sampling period, 8 spot samples of gas emissions (staggered over a 3-d period) were collected from each cow using GF, as well as 3×24-h collections using the SF6 technique. Methane emission data were averaged per cow for the statistical analysis. The mean methane emission was 373 (standard deviation=96.3) and 405 (standard deviation=156) g/cow per day for GF and SF6, respectively. Coefficients of variation for the 2 methods were 25.8 and 38.6%, respectively; correlation and concordance between the 2 methods were 0.40 and 0.34, respectively. The difference in methane emission between the 2 methods (SF6 – GF) within treatment was from 46 to 144 and 24 to 27 g/d for phases 1 and 2, respectively. In the conditions of this experiment, the SF6 technique produced larger variability in methane emissions than the GF method. The overall difference between the 2 methods was on average about 8%, but was not consistent over time, likely influenced by barn ventilation and background methane and SF6 concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.